

3 Sobolev Spaces

Exercise 3.1. Let $\Omega \subset \mathbb{R}^d$ be an open set. Prove that

$$\text{Lip}(\Omega) \cap L^\infty(\Omega) \subseteq W^{1,\infty}(\Omega).$$

Moreover, show with a counterexample that when there is no Extension operator between $W^{1,\infty}(\Omega)$ and $W^{1,\infty}(\mathbb{R}^d)$ then the above inclusion is strict, namely there exist functions in $W^{1,\infty}(\Omega)$ which are not Lipschitz.

Exercise 3.2. Let $G : \mathbb{R} \rightarrow \mathbb{R}$ be a Lipschitz function such that $G(0) = 0$ and $u \in W_0^{1,p}(\Omega)$ for some $1 \leq p \leq \infty$ and $\Omega \subset \mathbb{R}^d$ open set. Show that $G \circ u \in W_0^{1,p}(\Omega)$.

Exercise 3.3. Let $\Omega \subset \mathbb{R}^2$ be the ball of radius 1 centered at the origin and let $u : \Omega \rightarrow \mathbb{R}$ defined as $u(x) = |x|^{-\alpha}$ for $\alpha > 0$. Are there some values of $\alpha > 0$ such that $u \in H^1(\Omega)$? Are there some values of $\alpha > 0$, $p < 2$ such that $u \in W^{1,p}(\Omega)$?

Remark. note that the function u is not continuous, thus in case you find that $u \in W^{1,p}(\Omega)$ for some α and p , it shows the existence of a Sobolev function that is not necessarily continuous. This would not be possible in the 1 dimensional case.

Exercise 3.4. Let $\Omega \subset \mathbb{R}^d$ open and $u \in W^{1,p}(\Omega)$ for some $1 \leq p \leq \infty$. Show that the functions

$$u^+ = \max\{u, 0\}, \quad u^- = \max\{-u, 0\}, \quad |u| = u^+ + u^-$$

are in $W^{1,p}(\Omega)$ and their weak derivatives correspond to

$$\frac{\partial u^+}{\partial x_i} = (\chi_{E^+}) \frac{\partial u}{\partial x_i}, \quad \frac{\partial u^-}{\partial x_i} = -(\chi_{E^-}) \frac{\partial u}{\partial x_i}, \quad \frac{\partial |u|}{\partial x_i} = (\chi_{E^+}) \frac{\partial u}{\partial x_i} - (\chi_{E^-}) \frac{\partial u}{\partial x_i}$$

where $E^\pm = \{x \in \Omega : u(x) \gtrless 0\}$ and χ_E denotes the usual characteristic function of the set E . Finally, for every $M > 0$, deduce that the truncated function

$$T_M u = \max \{ \min\{u, M\}, -M \}$$

is also in $W^{1,p}(\Omega)$.

Exercise 3.5. Let $1 \leq p < \infty$, $u \in W^{1,p}(\mathbb{R}^d)$ and $\{e_i\}_{i=1}^d$ be the canonical orthonormal basis of \mathbb{R}^d . Let $h > 0$ and set

$$\partial_i^h u(x) = \frac{1}{h} (u(x + h e_i) - u(x)) \quad \text{whenever } u \text{ is well defined at the points } x, x + h e_i.$$

Observe that $\partial_i^h u$ is well defined a.e. in \mathbb{R}^d and show that $\partial_i^h u(x) \rightarrow \partial_{x_i} u$ strongly in $L^p(\mathbb{R}^d)$ as $h \rightarrow 0$.